Copied to
clipboard

G = C62.134D4order 288 = 25·32

39th non-split extension by C62 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial

Aliases: C62.134D4, (C6×Q8)⋊6S3, (C3×Q8).65D6, (C2×C12).157D6, (C3×C12).102D4, C327Q169C2, C3211SD169C2, C12.61(C3⋊D4), C12.58D613C2, C35(Q8.11D6), (C6×C12).148C22, C12.101(C22×S3), (C3×C12).105C23, C12.59D6.8C2, C4.17(C327D4), C3223(C8.C22), C12⋊S3.30C22, C324C8.17C22, (Q8×C32).27C22, C324Q8.30C22, C22.11(C327D4), (Q8×C3×C6)⋊6C2, (C2×Q8)⋊4(C3⋊S3), Q8.11(C2×C3⋊S3), (C3×C6).288(C2×D4), C6.129(C2×C3⋊D4), C4.15(C22×C3⋊S3), C2.18(C2×C327D4), (C2×C6).102(C3⋊D4), (C2×C4).20(C2×C3⋊S3), SmallGroup(288,799)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C62.134D4
C1C3C32C3×C6C3×C12C12⋊S3C12.59D6 — C62.134D4
C32C3×C6C3×C12 — C62.134D4
C1C2C2×C4C2×Q8

Generators and relations for C62.134D4
 G = < a,b,c,d | a6=b6=d2=1, c4=b3, ab=ba, cac-1=dad=a-1b3, cbc-1=dbd=b-1, dcd=c3 >

Subgroups: 620 in 180 conjugacy classes, 65 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, Q8, C32, Dic3, C12, C12, D6, C2×C6, M4(2), SD16, Q16, C2×Q8, C4○D4, C3⋊S3, C3×C6, C3×C6, C3⋊C8, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C2×C12, C3×Q8, C3×Q8, C8.C22, C3⋊Dic3, C3×C12, C3×C12, C2×C3⋊S3, C62, C4.Dic3, Q82S3, C3⋊Q16, C4○D12, C6×Q8, C324C8, C324Q8, C4×C3⋊S3, C12⋊S3, C327D4, C6×C12, C6×C12, Q8×C32, Q8×C32, Q8.11D6, C12.58D6, C3211SD16, C327Q16, C12.59D6, Q8×C3×C6, C62.134D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊S3, C3⋊D4, C22×S3, C8.C22, C2×C3⋊S3, C2×C3⋊D4, C327D4, C22×C3⋊S3, Q8.11D6, C2×C327D4, C62.134D4

Smallest permutation representation of C62.134D4
On 144 points
Generators in S144
(1 38 99 18 68 15)(2 12 69 23 100 35)(3 40 101 20 70 9)(4 14 71 17 102 37)(5 34 103 22 72 11)(6 16 65 19 104 39)(7 36 97 24 66 13)(8 10 67 21 98 33)(25 116 74 90 62 110)(26 107 63 95 75 113)(27 118 76 92 64 112)(28 109 57 89 77 115)(29 120 78 94 58 106)(30 111 59 91 79 117)(31 114 80 96 60 108)(32 105 61 93 73 119)(41 83 52 127 140 130)(42 135 141 124 53 88)(43 85 54 121 142 132)(44 129 143 126 55 82)(45 87 56 123 144 134)(46 131 137 128 49 84)(47 81 50 125 138 136)(48 133 139 122 51 86)
(1 130 96 5 134 92)(2 93 135 6 89 131)(3 132 90 7 136 94)(4 95 129 8 91 133)(9 142 74 13 138 78)(10 79 139 14 75 143)(11 144 76 15 140 80)(12 73 141 16 77 137)(17 26 55 21 30 51)(18 52 31 22 56 27)(19 28 49 23 32 53)(20 54 25 24 50 29)(33 59 48 37 63 44)(34 45 64 38 41 60)(35 61 42 39 57 46)(36 47 58 40 43 62)(65 115 128 69 119 124)(66 125 120 70 121 116)(67 117 122 71 113 126)(68 127 114 72 123 118)(81 106 101 85 110 97)(82 98 111 86 102 107)(83 108 103 87 112 99)(84 100 105 88 104 109)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(2 4)(3 7)(6 8)(9 40)(10 35)(11 38)(12 33)(13 36)(14 39)(15 34)(16 37)(17 19)(18 22)(21 23)(25 50)(26 53)(27 56)(28 51)(29 54)(30 49)(31 52)(32 55)(41 80)(42 75)(43 78)(44 73)(45 76)(46 79)(47 74)(48 77)(57 139)(58 142)(59 137)(60 140)(61 143)(62 138)(63 141)(64 144)(65 98)(66 101)(67 104)(68 99)(69 102)(70 97)(71 100)(72 103)(81 120)(82 115)(83 118)(84 113)(85 116)(86 119)(87 114)(88 117)(89 129)(90 132)(91 135)(92 130)(93 133)(94 136)(95 131)(96 134)(105 122)(106 125)(107 128)(108 123)(109 126)(110 121)(111 124)(112 127)

G:=sub<Sym(144)| (1,38,99,18,68,15)(2,12,69,23,100,35)(3,40,101,20,70,9)(4,14,71,17,102,37)(5,34,103,22,72,11)(6,16,65,19,104,39)(7,36,97,24,66,13)(8,10,67,21,98,33)(25,116,74,90,62,110)(26,107,63,95,75,113)(27,118,76,92,64,112)(28,109,57,89,77,115)(29,120,78,94,58,106)(30,111,59,91,79,117)(31,114,80,96,60,108)(32,105,61,93,73,119)(41,83,52,127,140,130)(42,135,141,124,53,88)(43,85,54,121,142,132)(44,129,143,126,55,82)(45,87,56,123,144,134)(46,131,137,128,49,84)(47,81,50,125,138,136)(48,133,139,122,51,86), (1,130,96,5,134,92)(2,93,135,6,89,131)(3,132,90,7,136,94)(4,95,129,8,91,133)(9,142,74,13,138,78)(10,79,139,14,75,143)(11,144,76,15,140,80)(12,73,141,16,77,137)(17,26,55,21,30,51)(18,52,31,22,56,27)(19,28,49,23,32,53)(20,54,25,24,50,29)(33,59,48,37,63,44)(34,45,64,38,41,60)(35,61,42,39,57,46)(36,47,58,40,43,62)(65,115,128,69,119,124)(66,125,120,70,121,116)(67,117,122,71,113,126)(68,127,114,72,123,118)(81,106,101,85,110,97)(82,98,111,86,102,107)(83,108,103,87,112,99)(84,100,105,88,104,109), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (2,4)(3,7)(6,8)(9,40)(10,35)(11,38)(12,33)(13,36)(14,39)(15,34)(16,37)(17,19)(18,22)(21,23)(25,50)(26,53)(27,56)(28,51)(29,54)(30,49)(31,52)(32,55)(41,80)(42,75)(43,78)(44,73)(45,76)(46,79)(47,74)(48,77)(57,139)(58,142)(59,137)(60,140)(61,143)(62,138)(63,141)(64,144)(65,98)(66,101)(67,104)(68,99)(69,102)(70,97)(71,100)(72,103)(81,120)(82,115)(83,118)(84,113)(85,116)(86,119)(87,114)(88,117)(89,129)(90,132)(91,135)(92,130)(93,133)(94,136)(95,131)(96,134)(105,122)(106,125)(107,128)(108,123)(109,126)(110,121)(111,124)(112,127)>;

G:=Group( (1,38,99,18,68,15)(2,12,69,23,100,35)(3,40,101,20,70,9)(4,14,71,17,102,37)(5,34,103,22,72,11)(6,16,65,19,104,39)(7,36,97,24,66,13)(8,10,67,21,98,33)(25,116,74,90,62,110)(26,107,63,95,75,113)(27,118,76,92,64,112)(28,109,57,89,77,115)(29,120,78,94,58,106)(30,111,59,91,79,117)(31,114,80,96,60,108)(32,105,61,93,73,119)(41,83,52,127,140,130)(42,135,141,124,53,88)(43,85,54,121,142,132)(44,129,143,126,55,82)(45,87,56,123,144,134)(46,131,137,128,49,84)(47,81,50,125,138,136)(48,133,139,122,51,86), (1,130,96,5,134,92)(2,93,135,6,89,131)(3,132,90,7,136,94)(4,95,129,8,91,133)(9,142,74,13,138,78)(10,79,139,14,75,143)(11,144,76,15,140,80)(12,73,141,16,77,137)(17,26,55,21,30,51)(18,52,31,22,56,27)(19,28,49,23,32,53)(20,54,25,24,50,29)(33,59,48,37,63,44)(34,45,64,38,41,60)(35,61,42,39,57,46)(36,47,58,40,43,62)(65,115,128,69,119,124)(66,125,120,70,121,116)(67,117,122,71,113,126)(68,127,114,72,123,118)(81,106,101,85,110,97)(82,98,111,86,102,107)(83,108,103,87,112,99)(84,100,105,88,104,109), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (2,4)(3,7)(6,8)(9,40)(10,35)(11,38)(12,33)(13,36)(14,39)(15,34)(16,37)(17,19)(18,22)(21,23)(25,50)(26,53)(27,56)(28,51)(29,54)(30,49)(31,52)(32,55)(41,80)(42,75)(43,78)(44,73)(45,76)(46,79)(47,74)(48,77)(57,139)(58,142)(59,137)(60,140)(61,143)(62,138)(63,141)(64,144)(65,98)(66,101)(67,104)(68,99)(69,102)(70,97)(71,100)(72,103)(81,120)(82,115)(83,118)(84,113)(85,116)(86,119)(87,114)(88,117)(89,129)(90,132)(91,135)(92,130)(93,133)(94,136)(95,131)(96,134)(105,122)(106,125)(107,128)(108,123)(109,126)(110,121)(111,124)(112,127) );

G=PermutationGroup([[(1,38,99,18,68,15),(2,12,69,23,100,35),(3,40,101,20,70,9),(4,14,71,17,102,37),(5,34,103,22,72,11),(6,16,65,19,104,39),(7,36,97,24,66,13),(8,10,67,21,98,33),(25,116,74,90,62,110),(26,107,63,95,75,113),(27,118,76,92,64,112),(28,109,57,89,77,115),(29,120,78,94,58,106),(30,111,59,91,79,117),(31,114,80,96,60,108),(32,105,61,93,73,119),(41,83,52,127,140,130),(42,135,141,124,53,88),(43,85,54,121,142,132),(44,129,143,126,55,82),(45,87,56,123,144,134),(46,131,137,128,49,84),(47,81,50,125,138,136),(48,133,139,122,51,86)], [(1,130,96,5,134,92),(2,93,135,6,89,131),(3,132,90,7,136,94),(4,95,129,8,91,133),(9,142,74,13,138,78),(10,79,139,14,75,143),(11,144,76,15,140,80),(12,73,141,16,77,137),(17,26,55,21,30,51),(18,52,31,22,56,27),(19,28,49,23,32,53),(20,54,25,24,50,29),(33,59,48,37,63,44),(34,45,64,38,41,60),(35,61,42,39,57,46),(36,47,58,40,43,62),(65,115,128,69,119,124),(66,125,120,70,121,116),(67,117,122,71,113,126),(68,127,114,72,123,118),(81,106,101,85,110,97),(82,98,111,86,102,107),(83,108,103,87,112,99),(84,100,105,88,104,109)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(2,4),(3,7),(6,8),(9,40),(10,35),(11,38),(12,33),(13,36),(14,39),(15,34),(16,37),(17,19),(18,22),(21,23),(25,50),(26,53),(27,56),(28,51),(29,54),(30,49),(31,52),(32,55),(41,80),(42,75),(43,78),(44,73),(45,76),(46,79),(47,74),(48,77),(57,139),(58,142),(59,137),(60,140),(61,143),(62,138),(63,141),(64,144),(65,98),(66,101),(67,104),(68,99),(69,102),(70,97),(71,100),(72,103),(81,120),(82,115),(83,118),(84,113),(85,116),(86,119),(87,114),(88,117),(89,129),(90,132),(91,135),(92,130),(93,133),(94,136),(95,131),(96,134),(105,122),(106,125),(107,128),(108,123),(109,126),(110,121),(111,124),(112,127)]])

51 conjugacy classes

class 1 2A2B2C3A3B3C3D4A4B4C4D4E6A···6L8A8B12A···12X
order12223333444446···68812···12
size1123622222244362···236364···4

51 irreducible representations

dim111111222222244
type+++++++++++-
imageC1C2C2C2C2C2S3D4D4D6D6C3⋊D4C3⋊D4C8.C22Q8.11D6
kernelC62.134D4C12.58D6C3211SD16C327Q16C12.59D6Q8×C3×C6C6×Q8C3×C12C62C2×C12C3×Q8C12C2×C6C32C3
# reps112211411488818

Matrix representation of C62.134D4 in GL6(𝔽73)

0720000
1720000
00603000
00433000
00006030
00004330
,
100000
010000
001100
0072000
000011
0000720
,
010000
100000
0051624512
0011224028
006346190
0056105454
,
010000
100000
000100
001000
002525720
0004811

G:=sub<GL(6,GF(73))| [0,1,0,0,0,0,72,72,0,0,0,0,0,0,60,43,0,0,0,0,30,30,0,0,0,0,0,0,60,43,0,0,0,0,30,30],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,72,0,0,0,0,1,0,0,0,0,0,0,0,1,72,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,51,11,63,56,0,0,62,22,46,10,0,0,45,40,19,54,0,0,12,28,0,54],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,25,0,0,0,1,0,25,48,0,0,0,0,72,1,0,0,0,0,0,1] >;

C62.134D4 in GAP, Magma, Sage, TeX

C_6^2._{134}D_4
% in TeX

G:=Group("C6^2.134D4");
// GroupNames label

G:=SmallGroup(288,799);
// by ID

G=gap.SmallGroup(288,799);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,254,219,100,675,185,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=d^2=1,c^4=b^3,a*b=b*a,c*a*c^-1=d*a*d=a^-1*b^3,c*b*c^-1=d*b*d=b^-1,d*c*d=c^3>;
// generators/relations

׿
×
𝔽